
1

The Evolution of AutoCAMS

By David Samuels

AutoCAMS is a term loosely used to describe the automated or autonomous workflow processing of a

CAMS station. CAMS has evolved from some simple batch scripts to help automate the daily processing

of video files throughout the night to nearly full autonomous operation for months at a time.

The purpose of the NASA/SETI CAMS project is to confirm the known meteor showers and discover new

ones. (see http://cams.seti.org). The project has proven to be accomplishing its original goals as well as

revealing more information about the complex dust distribution in our solar system.

The purpose of this paper is to provide a history of AutoCAMS from the perspective of its original

creator. AutoCAMS was originally a checklist style menu-based set of batch scripts or subroutines, run

in a windows command shell console window. The checklist menu items would be performed in the

order they needed to be performed (in computing, we call this a “workflow”). While the term

AutoCAMS still pertains to the workflow, it also includes the subroutines and programs written to create

an almost completely autonomous data collection system for a valuable research project.

INTRODUCTION

 AutoCAMS was originally a checklist style

menu-based set of scripts or subroutines run in

a windows command shell console window that

could be performed in the order they needed to

be performed (in computing, we call this a

“workflow”). It was originally called

CamsMenu.bat in 2011. The menu included the

ability to execute each of the steps that needed

to be performed from manually restarting

capture to post-capture processing, to sending

the results to the NASA server. The menu

included the ability to execute each of the

numbered steps that needed to be performed.

There is a main menu and a Utility menu.

Eventually, it was renamed to AutoCAMS in

2011 when it was apparent that it was evolving

into automating CAMS processing.

Circa 2006-2010 - Peter

Jenniskens, world-renowned

meteor scientist, and member

of the Fremont Peak

Observatory Association,

near Salinas, California,

used to bring college students and interns up to

the Observatory to teach them how to perform

meteor shower observations and recording.

He’d bring a group of people with lawn chairs

Peter Jenniskens

Original CAMS Menu

Original Cams Menu

http://cams.seti.org/

2

and hot drinks and they’d set up and manually

record meteors on their sky maps. He was

teaching them an astronomy skill of observing

meteor showers. Very often, Peter would also

point his DSLR at the sky and record the

showers with photographic evidence. At the

time, I was a board member at the observatory

and Peter and I had some discussions about his

work. Sometimes, he would invite me to

participate in broader campaigns in order to use

the camera images from different locations so

that he could triangulate the meteor’s

positions. I was able to help with triangulation

with my own photographic images from my

house in Pleasanton, CA.

It was probably 2007 when one night in the

dark, Peter and I were discussing how he’d

ideally like to be able to perform multi-site

video triangulation using highly-sensitive and

expensive WATEC 902 H2 Ultimate security

cameras. It was during that discussion that I

mentioned to him that it might be possible to

configure a computer to have multi-port video

cards and record video from multiple cameras

per computer to a hard drive. I told him how I

had a Windows Media Server computer with a

capture card that had two video ports for

recording two simultaneous NTSC TV channels

at the same time to a hard drive, but that I had

also heard about cards with four ports. About a

year or so went by when Peter told me about

his new research project, which he called CAMS

(acronym for Cameras for All-sky Meteor

Surveillance). Of course, they needed sites for

triangulation and Fremont Peak could be the

first. Peter and I were able to convince the

FPOA board in 2008-2009 that it would be good

for FPOA to have a real NASA/SETI research

project associated with the FPOA.

During that time span, in 2008, Pete Gural,

under contract from NASA for Peter Jenniskens,

wrote some C++ programs that perform

capture, calibration, meteor detection, and so

on, to run on BCSI Linux servers that had 4 port

capture cards.

In 2010, we had attached the first 20 camera

CAMS box to the East side of the FPOA

observatory building and 20 coax cables were

very tightly squeezed through a 4-inch conduit

to the 5 Linux servers inside the observing

room. No internet connection was provided.

The servers were configured under contract

from BCSI out of Colorado. The software for

capture, calibration, and post-capture detection

was written by Pete Gural. First light for FPOA

was August, 2010.

FPOA “Challenger” 1-meter f/3.58 telescope has

been in operation since 1986.

5 Linux based BCSI servers and equipment for a

single CAMS station

3

In 2011, Pete ported those Linux programs to

Windows and made them available to

Windows computer users in the form of what

was called “single-CAMS”. AutoCAMS

became a set of scripts that, among other

things, called Pete’s programs in the correct

order and with command-line parameters

that reflected the selected capture session. In

essence, AutoCAMS was a wrapper around

the programs developed by Pete Gural. In

addition, AutoCAMS included several

additional utilities and reporting facilities as it

related to managing a CAMS site.

Fremont Peak’s overlapping stations were

Lick Observatory site and Sunnyvale, CA.

Update: Late autumn 2017, Peter J eventually

replaced the 5-BCSI Linux-based servers per site

at Fremont Peak, Lick, and Sunnyvale with

single windows-based computers. Where there

were 5 BCSI servers for 20 cameras before, we

now have 1 computer with three 8-camera

Sensoray boards with 20 cameras. And we

installed the current AutoCAMS system that we

designed for the Single-CAMS sites.

SINGLE-CAMS PRINCIPLES

With all the things that could go wrong with an

amateur operated single-CAMS station, it was

apparent from the start that these three

principles of single-CAMS should be adopted:

1. Capture is the first priority. No matter what,

capture.

2. Don’t send bad data to NASA.

3. Avoid causing requests to resend data.

July, 2010 - Work party for installing the first CAMS station at Fremont Peak, California.

Lick Observatory CAMS station (seen with Jim Albers) is about

70 miles from Fremont Peak, California.

4

Capturing is indeed the single-most important

function. If you capture but don’t do the other

stuff right away, you can always do it later. But

if you don’t capture, then you’ll never be able

to re-create what you’ve missed… the data is

lost forever. If you are triangulating with

another site, then if you don’t capture, it makes

the work that the other site is doing useless.

There have been numerous times when it was

raining or cloudy in the evening (but captured

anyway), to find out that it cleared up not too

much later and the station was able to

contribute valuable data that night. In some

cases, a fireball would be captured through a

hole in the clouds. Originally, I had my camera

set up on a tripod under my back patio.

Eventually, I purchased a set of security camera

enclosures so that I’d have more flexibility as to

the pointing. Enabling the camera only when

you believe that it is good enough clear sky

works against this first principle and the data

proves that point. Automation is the way to

achieve the goals of this principle.

EVOLUTION

I believe it was in June 25, 2011, I met Pete

Gural and Peter Jenniskens at the Fremont Peak

observatory. They told me that Pete had just

released his Windows version of the Single-

CAMS software that was used on the Linux

based systems. Peter J knew that I had a Watec

camera already, and that getting started would

not be any great expense for me as a kind of

test site. Also, Peter knew that I lived within the

range of being able to overlap with the CAMS

California network.

Brentwood, CA: August 10, 2011, was first light

for the first Single-CAMS. Starting capture

manually, and performing all the post-capture

processing the next morning was obviously

time-consuming and onerous to do manually.

The first piece of automating CAMS was done

the first or second night - creating a scheduled

task in Windows to launch a script that launches

the capture program. That way, I wouldn’t miss

any part of the night due to forgetting to start

capture or just not being home in time to start

it. So, for me, CAMS has been automated from

the beginning. AutoCAMS evolved from that

point.

Pete modified his programs so

that it would take command line

arguments from scripts in order to

parameterize the startup. I also

helped Pete design some multi-

threaded programming so that he

could do capture and meteor

scanning at the same time, which

Pete has implemented brilliantly in his capture

programs and other programs he has developed

Pete Gural

First single-CAMS site was in Brentwood, CA

August 2011

5

since then. (However, in the evolution of

AutoCAMS, we later disabled the real-time

meteor detection (with INI file settings) because

it is not resilient to power outages and other

interruptions and we had to figure out a way,

outside of capture, to handle power

interruptions). Also, Pete G improved the speed

of detection by about 70x, which made it

feasible to do post-capture detection in a

reasonable amount of time.

AutoCAMS was originally called “CAMS Menu”.

That’s because it was a menu that executed the

necessary CAMS functions by entering the

checklist item number. A few months later, it

was renamed to AutoCAMS (figures 8 and 9).

AutoCAMS started as a simple set of Windows

batch scripts and Windows scheduled tasks.

When batch language was too slow, a batch

script would create a VBScript, which was called

and executed. There are only about 8 of those

VB scripts. I wanted AutoCAMS to be “open-

source”. The reason that batch script language

was chosen was so that anyone, in any time

zone or location in the world, at any time of the

day or night, could modify them if there was a

problem. I could have written AutoCAMS in C,

C++, Java, or VB, since I have decades of

experience in those languages, but I chose

Windows Batch language because nothing

would need to be installed on people’s

computers and there shouldn’t be versioning or

DLL or runtime library version issues. With the

other languages, not everyone would be able to

program, compile, and link without having to

deal with licensing issues, training, and such.

From 2011 – 2017, the scripts evolved into over

100+ batch scripts that would call each other to

get the job done. (By 2021, there are over 300

script files with over 90,000 lines of code). Over

time, some of the scripts have become obsolete

and no longer used. Some effort should

eventually be put into removing all that are no

longer useful. One of the first scripts was

LaunchCapture.bat, which was called by a

scheduled task.

Fig 8. Screenshot of AutoCAMS.bat checklist menu. Notice

how steps 1-17 are in the order they should be performed.

Detection is actually #45 on the utility menu, since at that time

we were using real-time detection.

Fig 9. Screenshot of AutoCAMS utility menu.

6

Then Jim Wray joined the

CAMS project and first light

for his site was December

13, 2011, starting with a

single old Watec camera,

just in time to capture the

annual Geminids meteor

shower, and he has been

providing data since then. Jim is the author of

the 1967 book "The computation of orbits of

doubly photographed meteors", which he

wrote when he was director of the Institute of

Meteoritics at the University of New Mexico in

Albuquerque. Jim’s site was over 100 miles

from my house (until I recently moved to

Texas), and it triangulated well with me, Lick

Observatory, and eventually Sunnyvale. With

Jim’s station being the second single-CAMS

station, but the first remote station, AutoCAMS

had to evolve to be more user-friendly and

reliable.

2012 saw CAMS sites installed in the BeNeLux

sites (that’s Belgium, Netherlands, and

Luxembourg) started with 4 cameras. By

February 8, 2014, there were 30 BeNeLux

cameras operational.

October 28, 2013, AutoCAMS was configured

and tested in Sunnyvale for the professional

New Zealand arrays before shipping them out.

This was the first time that the single-CAMS

software and AutoCAMS was used on one of

the professional CAMS stations. The boxes

arrived in New Zealand December 12, 2013 -

one damaged during transport. These stations

were the last to use the expensive $1,500 16-

port Sensoray board. The 8-port boards are only

about $220 each.

In 2014, Jim Wray came up with the idea that

we should be able to prove that cheap 1/3 inch

cameras could now be sensitive enough to be

used for CAMS data collection. So Jim

purchased 2 eight-port Sensoray boards (about

$220 each) and 18 of those cameras (average

about $45 each), various models and brands,

and I purchased a 4 port Sensoray grabber and

a few different models of Chinese based 1/3”

cameras and he and I tested the efficacy of

using those cameras with CAMS so that people

would be able to set up sites with more

cameras for less money than using the Watecs.

The Watec cameras cost about $400-$500 plus

the $120 lens, depending on where you buy

them from, availability, tariffs, etc. A typical 16-

camera site would commonly top $10,000 using

the Watec cameras. Some of these 1/3” based

cameras purchased from Ali-Express were as

low as $25 each. Pete G modified his

FTP_CaptureAndDetect program and produced

FTP_Capture8AndDetect.exe and

FTP_Capture4AndDetect.exe so that we could

run our tests. Jim ran two Sensoray boards at

the same time for several months and we got

good results. A paper was published for the at

the 2014 IAU conference in Giron, France

(Samuels et al., 2015

“IMC2014_Paper_ThirdInchCamerasForMeteor

Surveillance_Samuels-Wray_Final.pdf”) that

shows how we can attain almost equal

sensitivity to the Watec cameras (+5.9 meteor

limiting magnitude) when the Watecs are using

f/1.2 lenses and the 1/3” cameras are using

f/0.8 lenses. Jim had f/0.75, and f/0.9 lenses. I

had originally used f/1.2 lenses and I eventually

switched to f/1.0 lenses. The f/0.8 lenses are

not readily available in the 1/3” format, so we

typically settle for f/1.0 lenses. Jim and I also

calculated the spatial resolution for an average

Watec camera with a 12mm lens pointing at

roughly 45 degrees elevation. We came up with

about 100-110 meters per pixel at the 90 km

layer at that distance. Therefore, we aimed to

achieve that same spatial resolution with the

1/3” cameras. Doing the math, to achieve the

same spatial resolution, we decided to use

12mm lenses when pointing at 26 degrees,

8mm lenses when pointing 45 degrees, and

6mm lenses when pointing above 74 degrees.

Jim Wray

http://davesamuels.com/cams/one_third_inch_cameras/IMC2014_Paper_ThirdInchCamerasForMeteorSurveillance_Samuels-Wray_Final.pdf
http://davesamuels.com/cams/one_third_inch_cameras/IMC2014_Paper_ThirdInchCamerasForMeteorSurveillance_Samuels-Wray_Final.pdf

7

That strategy achieves full-sky coverage from 13

degrees elevation to 90 degrees.

Jim’s 16-camera station was the first array with

2 Sensoray boards with 16 cheap 1/3-inch

cameras in 2014. His site contributes almost as

many meteors as any other around the world.

Which proves its sensitivity.

San Mateo College became the third single-

CAMS station December 23, 2011.

Steve Rau, in BeNeLux, had been trying to use

the AutoCAMS scripts for his stations and a few

others. He believed that automation was the

key to getting consistent and reliable results.

CAMS 2

During 2015-2017, there was a long-

protracted period when I was away and it

was nearly impossible for me to support

remote CAMS stations. I either had very

poor and intermittent access through a

mobile hot-spot or I was at work behind a

corporate firewall, which blocked my ability

to support CAMS sites. Steve Rau stepped

in and helped out quite a bit and he saved

the day, taking over for me in keeping

everything up and running. It was during

this period (circa 2016-2017) when Pete G

released CAMS 2. CAMS 2 expanded the

camera number format from 3-digit to 6-

digit camera numbers and he changed the

file format and a few other things that made

the AutoCAMS scripts incompatible. After Steve

got tired of waiting for me to return and fix

AutoCAMS to adjust to CAMS 2 format changes,

he reverse-engineered the AutoCAMS scripts

using Delphi – Pascal. You could say that the

“open-source” nature of AutoCAMS was

successful due to his ability to do that.

AutoCAMS 2

Steve’s goal was to use

Delphi/Pascal and create parity

with the AutoCAMS checklist

style menu system while making

his system compatible with

Pete’s new CAMS 2 format. As

he worked on things, his

understanding of how I had

coded the algorithms increased and he started

coming up with good ideas on how to improve

the workflow. Eventually, Steve had

LaunchCapture.exe and CamsGUI.exe working,

which appears to be what he still calls

“AutoCAMS” in his documentation. I wished

there was a way to keep Steve’s code open-

source too, but that is entirely up to Steve.

Screenshot of CamsGUI.exe. Notice how the buttons are in

approximately the same order… to create parity with

AutoCAMS.bat. Reprocess is the same as Meteor Scan or Meteor

Detect.

Steve Rau

This shows how to tune the focal length to match the

elevation angle. In this figure, we show how two 16

camera stations, when designed for each other, can

achieve full-sky coverage.

8

I eventually returned home from my trip and I

started working closer with Steve to get

everything working smoothly. One of the issues

we had was that the BeNeLux workflow was

different than the rest of the world’s CAMS

workflow. This is in part because, in BeNeLux,

they were required to do manual meteor

confirmation. This made it impossible to fully

automate and run autonomously. So, there

were differences between his system and mine.

We collaborated and we made the necessary

changes to allow us (non-BeNeLux) to be able to

use Steve’s LaunchCapture system. So BeNeLux

uses the LaunchCapture.exe and CamsGUI.exe

to perform all of their duties, where there are

some manual steps required to perform using

CamsGUI each day. They don’t use any of my

AutoCAMS scripts anymore. The rest of the

world (except DC and Sunnyvale) use a hybrid of

LaunchCapture along with my AutoCAMS

scripts, without much use of CamsGUI, for full

autonomous operation. So, what should we call

them? I think they can both be called

AutoCAMS, since to me, AutoCAMS means to

automate CAMS operations. How do we

differentiate one from the other? I’m not quite

sure and it probably doesn’t matter.

Ideally, all configuration changes are governed

through .ini files. Steve and I worked together

to decide on which variables to use for these

configuration variables and how they’d be used.

Steve’s LaunchCapture.exe and CamsGUI.exe

programs are governed using a CamsGUI.ini file

for each CAMS Instance. There is also a backup

of CamsGUI.ini that is used in case you lose

network connection while modifying it. There

is one of these INI files for each CAMS

instance. My AutoCAMS scripts now mostly

use the

“?:\cams2_queue\RunFolder\Cams2Global.ini”

file, although some of the scripts do read the

CamsGUI.ini file variables and adapt

accordingly. The non-BeNeLux systems do not

use CamsGUI.exe very often. But it is still there

and configured.

Steve and I worked out a way for his program to

deal with multiple Sensoray capture cards, as

each board would have its own “instance” of

LaunchCapture.exe and CamsGUI.ini. Since

none of the BeNeLux stations had multiple

Sensoray boards at the time, it was difficult for

Steve to visualize the issues and test his code.

So, you have to appreciate what Steve

accomplished. Steve’s solution was for his

LaunchCapture program to keep track of how

many boards there are running and, during

post-capture processing, one LaunchCapture

instance sleeps until the next higher one ends

before it starts doing its own post-capture

processing.

My thoughts about how the workflow should

work also evolved over time as to how to make

the system more resilient to power outages and

unexpected restarts.

LAUNCHCAPTURE

Like the original LaunchCapture.bat script,

LaunchCapture.exe is a program that is

somewhat sophisticated. Unlike the original

LaunchCapture.bat script, which was a script

called by a scheduled task, the

LaunchCapture.exe program is called directly

Steve’s LaunchCapture.exe for board 0 waiting until 8:57 to

start the capture program.

9

from a scheduled task. There will be one

scheduled task for each CAMS instance. A

“CAMS instance” is a copy of the entire CAMS

working directory tree, complete with a copy of

the main capture programs, DLL libraries, star

database, CAL files, runtime libraries, and a few

other things. There is no need in a CAMS

instance to use my scripts or a RunFolder,

Transmitted directory, my .BAT scripts, or

configuration files to be copied to the CAMS

instance directory. Those files are in a separate

common directory structure used across all

CAMS instances.

Steve’s LaunchCapture.exe program does a lot.

Let’s just outline its workflow:

1. It launches at the same time each afternoon

(around 5 pm), reads the configuration files,

and it checks the time and the sun-angle

defined in the CamsGUI.ini file. The

SunAngle variable defines the angle of the

sun when we want to start capture.

Effectively, we want to wait until it is dark

enough to capture before launching the

FTP_Capture8andDetect.exe programs. This

value is displayed in LaunchCapture as

“Sunset”, but it means “Capture Start”. Pete

Gural’s FTP_Capture*.exe programs do the

same thing; except they interfere with the

user’s keyboard, once a minute, during the

time between when it started and the time

capture actually begins.

LaunchCapture.exe’s method of waiting for

the sun angle is a workaround for that issue

with Pete’s waiting algorithm. An example

is like this: Let’s say it’s June 20 – shortest

night of the year. If we run LaunchCapture

at 5pm each day (a time before it is

astronomically dark all year), then the time

to start capturing video would be, let’s say,

9 pm. So, for 4 hours, the program needs to

do a well-behaved “wait” before cameras

start capturing. Meanwhile, you are free to

use the computer during this time.

2. When it is finally time to start capturing,

LaunchCapture awakens, and calls the

FTP_Capture*.exe program specified in the

.ini file, with the correct command line

arguments. Then it does a well-behaved

wait until the child capture process ends

(that will likely be just before sunrise the

next morning, as determined by Pete’s

capture program using the sun angle passed

to it from LaunchCapture). This time is

displayed in the LaunchCapture window as

Sunrise, but it should be labeled as

“Capture End”. While it is waiting,

LaunchCapture instance is not consuming

any CPU resources. It is not polling, it is

waiting.

3. Whenever capture ends, LaunchCapture

awakens and performs post-capture

processing from the highest board number

to the lowest. It starts with the most recent

capture session in the CapturedFiles

directory, then it works backward and

performs post-capture processing for any

backlog of unprocessed capture sessions

until the CapturedFiles directory is empty.

4. LaunchCapture’s post-capture processing is

done in phases for each capture session for

that board:

4.1. Validation

4.2. AutoCal

4.3. Detection

4.4. Apply calibration to detect file

4.5. Manual Confirmation (only for

BeNeLux users)

4.6. Migrate to SubmissionFiles

4.7. Create the Transmission Zip (only for

BeNeLux users)

4.8. Upload the Transmission Zip (only for

BeNeLux users)

4.9. Archive (only for BeNeLux users)

Once it is done with the Apply step, it

“moves” all the files to a directory that

uniquely identifies the board number and

the capture session under SubmissionFiles.

10

Each SubmissionFiles directory will have

subdirectories for ArchivedFiles,

CapturedFiles, optionally ConfirmedFiles,

FTP, and Logs. The FTP directory is where a

few files are pre-staged for transmission,

such as the FTPdetectinfo file, local-

midnight FF files, CAL files, and weather

forecast file. If you are a BeNeLux user, you

are required to use the CamsGUI program

to launch the Confirmation program, do the

confirmation step, and then manually

upload the files to the server (by selecting

the appropriate button in CamsGUI). If you

are not a BeNeLux user, then confirmation

is not performed and all required steps are

handled autonomously.

Then it repeats these steps for each capture

session if there is a backlog of capture

sessions remaining in the CapturedFiles

directory. (The backlog could have been the

result of power outages or manual restarts).

When it is able to complete all its work,

then the CapturedFiles directory for that

CAMS instance should be empty.

5. Once LaunchCapture has completed post-

capture processing for all the capture

sessions in the instance’s CapturedFiles

directory, it ends.

6. Once LaunchCapture ends, if there are

multiple CAMS instances, the remaining

LaunchCapture instances will have been

polling the system processes every 5

minutes to see how many

LaunchCapture.exe instances there still are.

7. If there are multiple CAMS instances, there

will be 2-3 instances of the

LaunchCapture.exe process to start with.

When each LaunchCapture.exe process

started, it kept a count of how many other

LaunchCapture processes there were at the

time and it assigned itself a number based

on that count. The post-capture processing

happens from the highest CAMS instance to

the lowest (as determined by board number

starting with 0). When a higher board

number’s LaunchCapture instance is

performing post-capture processing the

lower board number’s LaunchCapture

instances poll once every 5 minutes to see if

the instance count has dropped and if it is

that LaunchCapture instance’s turn to run.

8. If the instance count drops to its assigned

count number, then that LaunchCapture

instance awakens and performs its own

post-capture processing, using the same

steps as above.

Non BeNeLux sites have been using a hybrid of

Steve’s LaunchCapture.exe with the addition of

my AutoCAMS scripts, which are now all

situated in the “?:\cams2_queue\RunFolder”

for full autonomous operation. Unlike with per-

instance LaunchCapture.exe and CamsGUI.exe,

the queue system is one system for the entire

computer. No matter how many CAMS

instances there are, there is only one

"cams2_queue" directory. Each CAMS instance

location is specified in the "Cams2Global.ini"

file, which contains the variables used by the

queue-based scripts to locate each of the CAMS

instances.

STORAGE MANAGEMENT/ARCHIVING

A huge issue to deal with is the massive amount

of data produced by a CAMS station. Each

Screenshot of the Archive program just getting started.

This Mars Hill station has drive E: as the CAMS drive and

F: as the Archive drive.

11

camera can produce about 6.5 GB of data files

during capture each winter night (depending on

the latitude). Less on summer nights. While

most of the BeNeLux sites didn’t have 16-20

camera sites with dual or triple Sensoray

boards, most of my sites did. By “my sites”, I am

only using that term as a way of referring to the

stations that I’ve been managing. With a 20-

camera site producing over 120 GB per night,

and with some of their cameras sometimes

being noisy because of faulty wiring or

tarnished connections, even a 6 TB hard drive

couldn’t hold enough archived data. With a

background in working for EMC, which was a

leader in the n-tier storage world, I realized that

AutoCAMS needed similar storage management

- some 2-tier or 3-tier storage management.

You see, I kept getting pulled into fixing

people’s disk-full issues. So, I redesigned the

Archiving scripts and protocols to not only

archive data, but to also keep the data

management under control using an n-tier

strategy. Originally, we would wait until

MaxDaysToKeep INI file parameter to trigger

culling of the CapturedFiles directory. Culling

the CapturedFiles directory at that time was

possible because a copy of any FF file that had

an event (meteor) was also stored in the

ArchivedFiles directory. Therefore, none of the

FF files in the CapturedFiles directory are

needed after a certain amount of time. Culling

the CapturedFiles FF files removes up to 120 GB

of unneeded disk usage. Then we would ZIP the

remaining files of the capture session (including

all the FF files in the ArchivedFiles and

ConfirmedFiles directories) into a zip file and

move that to the archive drive/directory. That

way, if a capture session was ever needed, we

could unzip an archived capture session and do

research on it as needed. The INI files specify a

separate Cams Archive variable for the archive

drive. Ideally, the archive drive is a separate

removable hard drive that, when full, can be

swapped out for a new one. The Arizona

stations were the first to implement my

external archive drive design, and that has

proven to be effective… and recommended.

Eventually, I learned that, for reliability of the

backup/archive, the archive scripts should

instead create the archive zip file as soon as it

was possible instead of waiting

MaxDaysToKeep. It was only the culling that

needed to wait. Then I leave a flag file, marking

the capture session as “AlreadyArchived.txt”, so

that it does not need to be zipped and archived

again – only the session’s CapturedFiles dir

need to be culled upon MaxDaysToKeep. This

makes the archiving more resilient to power

outages, aborts, and other interruptions and it

protects against not getting a chance to run

when there is a backlog.

To re-archive a session, simply delete the

AlreadyArchived.txt file from that capture

session’s CapturedFiles directory. If needed, you

can always unzip the archive zip file to its

location in the SubmissionFiles directory. When

you do that, you may also want to copy all the

FF files from its ArchivedFiles directory to its

CapturedFiles directory, so that the programs

and scripts and re-process, as if it’s a freshly

captured session.

Using this storage management scheme, we

have some 16 camera stations with small 1 TB

hard drives that have run for months or nearly a

year, without having to intervene. Note: 16

camera stations are difficult if they only have 1

TB of storage, so we recommend obtaining

more storage for the CAMS drive in those

situations, as well as having a separate

removeable archive drive. Sadly, we can’t

archive all the data like this forever. We have

also found that we cannot depend on humans

to periodically cull their archives or to move

them off-site. So, I also had to implement the

ability to automate the culling of very old

archive zip files when the hard drive starts to fill

12

up with archive files. We have automated this

too. We delete everything that is too old (about

2 years), from the archive’s Transmitted, CAL,

and SubmissionFiles. We use the INI file setting

[CAMS2ARCHIVE].MaxYears_archived_Submissi

onFiles, and

MaxYears_archived_TransmittedFiles. The CAL

files are always archived when they are older

than MaxDays_Cal days, which defaults to 365

days.

UPLOADING

The upload routines are another set of routines

that have evolved over the years. When we

upload to the NASA server, we have always

collected just a very small part of the capture

session, compressed it into a zip file, and

uploaded it to the NASA server to a directory

specific to the station’s CAMS network. This is

why a reliable internet connection is required.

That file is called the “transmission zip file”. The

file consists of the detect file, CAL files that

were used in this session, local-midnight FF

files, and a few other files that indicate how it

was configured during that session. An 8-

camera transmission zip file is typically about 2

MB - 5 MB. With a noisy camera, these can be

50 MB – 80 MB. BeNeLux sites use Steve’s

LaunchCapture to create and upload the

transmission zip during its post-capture

processing. But because the non-BeNeLux users

run autonomously, the procedure needed to be

more resilient. Therefore, non-BeNeLux sites

use my new queued system AutoCAMS scripts

to create the transmission zips and to upload.

The AutoCAMS scripts create the transmission

zip files by calling the ZipCams2FromFTP.bat

script.

Originally, we had used the Microsoft FTP

program to upload the transmission zip files to

the NASA server. However, we learned that we

needed a tool that is more resilient. FTP had

many issues and was not reliable at all. We

switched to WinSCP for that. It performs retries

and it returns error codes. But, WinSCP can still

fail. We have encountered numerous situations

where the FTP upload failed for all manner of

reasons. The reasons range from local network

being unavailable, to power outage before

transmission is complete, to NASA server being

down for a few days. I wanted to design a

system that could handle this automatically. So,

I developed the “queued” upload. Regardless of

the ability to upload successfully, all

transmissions that are ready are placed in the

queue directory. Along with the zip file is an

MD5 hash file for that zip file. (A hash file is a

small text file with a large hash number that

uniquely represents the contents of a file. It

uses cryptographic algorithms to come up with

the hash number). The upload script creates a

text file that lists all the transmission zip files in

the queue. Then it sorts them and then uploads

them from oldest to newest. Once a

transmission zip file is uploaded, for validity

testing, it is immediately downloaded to a local

temp directory. For validity testing, we rehash

the downloaded zip file with MD5 and compare

the two before/after hash files. If they are

different, then we know the file got corrupted

and we move on to the next transmission zip

file, leaving the original transmission zip still in

the queue, since we don’t really know the

cams2_queue directory with one transmission zip (not yet transmitted) and

its corresponding .md5 file. Also shown is the cams2_queue.txt file with the

name of the zip file. Once upload is verified, the zip and its .md5 file will be

moved to the Transmitted directory. All the scripts are placed in the

RunFolder.

13

reason the upload failed. We will attempt to re-

upload the failed zip file on the next go-round.

If the MD5 matches, then the temporary zip file

is unzipped. If the unzipping function fails, then

we know that the zip file is corrupt in some

other way. Otherwise, the upload succeeded. If

the upload succeeded, then we upload the

transmission zip file’s .md5 file to the NASA

server and then MOVE the transmission zip file

and its .md5 file out of the queue directory and

into the Transmitted directory. The people at

NASA/SETI could write scripts such that if a zip

file were present but its matching .md5 file is

not present, then they’d know either the zip file

on the server is corrupt or it is not finished

uploading – in other words, they shouldn’t use

it yet. They should be able to use the .md5 files

to do their own hash-check before

incorporating the data into the day’s

Coincidence processing. Before a zip is added

to the queue, the Transmitted directory is

checked to ensure that it is not already there -

to avoid uploading it a second time. If you really

want to upload it a second time, then you must

delete its md5 file and zip file from the

Transmitted directory first.

This protocol is not too dissimilar to the

Amazon AWS S3 upload protocol (a fact not

discovered until years after I developed it).

However, since Amazon’s server is based on

web services, Amazon avoids the download

step and just compares the hashes. We can’t do

that because our server is just a dumb FTP

server. Because of that, Amazon AWS S3 upload

protocol is much faster. I had to come up with

a different workaround with all the logic on the

client-side. Once the queue is processed, we

wait about an hour and start the next go-round,

by checking the queue for any remaining zip

files in the queue directory. The queue might

not be empty an hour later due to failure to

upload one or more zip files the first time or,

while we were processing the queue, other

scripts had completed post-capture processing

and new transmission zip files would be

available in the queue. If the queue is empty,

then uploading is done for that day. If there are

still zip files in the queue, then we keep trying

every hour until 3 pm, when we need to

perform archiving and then start getting ready

for the next night’s capture.

There are two other optional features that were

designed with our uploading protocol. One is

that the zip files that we upload can be

sequenced with a sequence number suffix. We

might need this if we had to upload to a server

that was read-only. The other feature is the

ability to send split zip files. A split zip file is a

zip file that is sent in small chunks and

reassembled by someone at the receiving end.

This prevents the need to re-transmit very large

files in the case of an upload failure. At some

sites with unreliable internet, it is more likely to

be able to consistently transmit ten 2 MB files

than one 20 MB file. And if the one of the 2 MB

files had an issue during the transmission, only

the failed split files would need to be

retransmitted. Both these features of the

protocol are built-in to the uploading scripts;

however, we almost always disable them in the

INI file. Especially since, at the server end, they

have not written the code to be able to handle

sequenced file names or to reassemble the split

zips.

This protocol has proven to be reliable and

resilient. Anyone else, such as RMS, could adopt

a similar protocol to ensure reliable uploads.

What’s cool about this approach is that if there

is a problem, then it kind of fixes itself. We

recently had an issue at one very remote 20

camera array, where there was about 1.5

months of data that had not been processed. I

don’t remember the exact reason why. But

once the problem was resolved, the AutoCAMS

routines simply started working as they should.

It took 7 days for the system to automatically

catch up by itself. One of the issues we were

14

having at the time was that the cameras had

gotten so noisy, that each capture session was

expanding to about 200+ GB and taking too long

to do post-capture processing. We fixed the

problem with ground-loop baluns, because the

wiring was already in place. However, moving

forward, using Cat6 with Video Baluns at each

end instead of coax with ground loop baluns is

recommended.

UNIQUE NAMING CONVENTION

A lot of thought was put into the naming

convention for the archives and the

transmission files that we upload to NASA. This

is something that has also changed and evolved

from 2011 – about 2014. The naming

convention is important because (A) it must

allow us to upload multiple sessions in a night in

case there were power glitches or other

restarts, either expected or unexpected; (B) it

had to allow these multiple uploads without

them overwriting previous uploads; (C) it allows

the Coincidence process to include all of the

capture sessions, no matter how short, for its

triangulation procedure; (D) a similar naming

convention was created for the archive files.

For capture sessions, transmission zips, and

archive zips, the convention is to use the

capture session start time with a unique camera

number:

“yyyy_mm_dd_<camera>_HH_MM_SS.zip”.

We separate the start date from the start time

with the camera number in order to facilitate

sorting and grouping. For “camera”, we use just

the first 6-digit camera number for the CAMS

instance. The file names do not need to have

the entire camera list as we once tried. Neither

do they need the first and last camera numbers.

All we are trying to accomplish, and this is

important, is to come up with a unique name

that does not conflict with a file name from our

own or from another site. So, for other capture

session-related files, such as a detect file, a

unique naming convention uses something like

this:
“[prefix]_yyyy_mm_dd_[camera]_hh_mm_ss_[suffix]”

where <prefix> is the name of the file, such as

“FTPdetectinfo”, and [suffix] would be what

other information is needed. <suffix> would be

any other information that needs to be

conveyed and/or the type/extension of the file.

It’s important to add a dot three letter

extension on the file so it can be sorted,

grouped, and/or associated with an appropriate

application. The CAMS date/time format uses

only underscore “_” as separators instead of “:”

and “.”, "-", and “,”, etc. That way, no

localization of parts of dates and time values is

required. “yyyy_mm_dd” would be the capture

session UTC date of the start of the capture

session and “hh_mm_ss” would be the capture

session UTC time of the start of the capture

session. Capture session directories in

CapturedFiles are already named like this:

“yyyy_mm_dd_hh_mm_ss”, where that

indicates the UTC time of the start of the

session. So, you can determine the capture

session start time by parsing the directory

name.

For non-capture session related files, a unique

naming convention would be something like

this:
“[prefix]_yyyy_mm_dd_[station]_hh_mm_ss_[suffix]”
or “[prefix]_[station]_[suffix]” for files that don’t

require date/time. Where “yyyy_mm_dd” and

“hh_mm_ss” would be the date/time, in CAMS

format, when the file was created and [station]

would be some code that uniquely identifies the

station. For example, you could use the first

camera of the first CAMS instance or something

like the “CODE” column in the CameraSites.txt

file, or the lat/long of the site, or anything else,

just as long as it uniquely identifies the site

worldwide. Another option, if the time is not

important, is to use this convention:

“[prefix]_[station id]_[suffix]”

For example:

“Status_000957_MC_Meteor Crater.txt”

15

It’s important to use a naming convention that

performs its own grouping when sorted. For

example, sorting by station name would not

group all the Arizona stations together.

However, including their first camera

accomplishes that.

REMOTE AUTOCAL

While this is no longer an issue in the current

AutoCams, there is an interesting bit of history

that should be included. After the CAMS

network started expanding around the globe,

CAMS started to be deployed outside of the

USA. There was a time when the NASA contract

under which the CAMS programs were

originally developed prohibited the deploying

and executing of certain parts of CAMS outside

the USA, specifically, the calibration routines.

So, in keeping with the letter of the contract, I

had to invent a protocol for calibrating a non-

USA station’s capture sessions on a USA-based

server and sending the results back to the non-

USA station.

An Amazon AWS server was configured and

deployed, in a USA datacenter, to sit there and

wait for calibrations requests. These calibration

requests were uploaded into a queue folder. It

would AutoCal the requested session, and put

the results into a folder where the non-USA

station could download them from. The

protocol was very complex.

Thankfully, Pete G had earlier created the

FTP_CalStarExtractor.exe

FTP_CalStarsReconstitution.exe programs,

which I employed for this purpose.

FTP_CalStarExtractor.exe program would create

a text file, named “CALSTARS*.txt”, that

represented where many of the calibration

stars were in the FF files.

FTP_CalStarsReconstitution.exe could then be

used on the remote calibration server to

reconstitute into low-res FF files that would be

compatible with and used by

FTP_MeteorCalAutoUpdate.exe to perform

autocal. The CALSTARS files would be created

on the local station, zipped, and then uploaded

to the remote calibration server’s queue

directory. A strict naming convention was used

to identify whether the files were going to the

server or coming from the server. Then, the

local station would wait for the results to

appear in the remote calibration server’s

“ready” folder.

In the meantime, the remote calibration server

awakens from a well-behaved “wait” whenever

files appear in its queue directory. At that point,

it would reconstitute the FF files from the

CALSTARS, perform autocal, and move the

results to the server’s “ready” directory.

The Remote Calibration requires the following

scripts:

• AAA_CleanServer.bat

• AutoCal.bat

• AutoCal_LocalDownload.bat

• AutoCal_LocalUpload.bat

• AutoCal_Remote.bat

• ftp_upload_robust_seti.bat

• Lock_AutoCamsMenu.bat

• MonitorDir_Poll_Client.bat

• MonitorDir_Poll_server.bat

• ReadRemoteConfig.bat

• Start_CalServer.bat

• Unlock_RemoteSession.bat

• Waitfor_AutoCal_LocalDownload.bat

• waitFor_AutoCams_lock.bat

We learned that files would have access

contentions, so a locking protocol had to be

developed for AutoCAMS too. It uses

Lock_AutoCamsMenu.bat and

Unlock_RemoteSession.bat.

The AutoCal_LocalUpload.bat script is kind of

where it all kicks off. It performs the first phase

of the AutoCal_Remote procedure by uploading

16

the CALSTARS and associated Cal files into a zip

file and uploading it to a remote CAMS

calibration server, which is USA-based, which

performs the AutoCal function remotely and

sends the results back.

The argument pairs can be placed in any order.

 arg1 /capturedir bat_capturedfilesdir

 arg2 /caldir bat_caldir

QUEUE FORMAT:

 Queue Name:

".\CAMS\AutoCal_Remote_Queue\

AutoCal_Remote_Queue.txt"

 The queue items will be entered as

follows:

CALSTARS??????_????????_??????.zip,"<bat_

capturedfilesdir>","<bat_caldir>","<command

line>"

 The original source zip file that got uploaded

will remain in the queue folder until after its

results have been safely downloaded. That

way, if necessary, it can be resubmitted

easier.

Steps involved:

PHASE ONE

1. When AutoCal.bat is run locally, if it's run

using the /remote command line switch, it

behaves differently. Instead of doing

autocal, it performs the

AutoCal_Remote.bat procedures.

2. Run FTP_CalStarExtractor.exe.

3. Zip the CALSTARS*.txt files, along with the

camerasites.txt file and the most recent

CAL file for each camera into a zip file. The

Zip file will be stored in the

".\CAMS\AutoCal_Remote_Queue\" dir.

4. Move the zip file to the

".\CAMS\AutoCal_Remote_Queue\"

folder.

5. Add item to the remote queue. Include

the zip file name, bat_capturedfilesdir,

bat_caldir

6. Upload the zip file to the server [which

triggers phase two on the remote server]

7. Wait for the server to create your results

using the MonitorDir program locally, set

to invoke AutoCal_LocalDownload.bat

when it is signaled.

PHASE TWO on the remote server:

A. Moves the zip file from the TestCal\From

folder to the Zip folder.

B. Unzips the zip file to the TestCal folder.

C. Reconstitutes the FF files from the

CALSTARS files.

D. Move the CAL, FF, camerasites, and log

files to TestCal\CapturedFiles\{date time}

folder.

E. Launch AutoCal.bat /remote. This

produces a CAL file for each camera into

the CapturedFiles dir as well as a BinFiles

dir, containing the CAL files and their

corresponding FF files.

F. Package the results into a zip file and move

it into the TestCal\From dir. [which triggers

phase three on the local system] If there

are any errors during the

AutoCal_Remote.bat script, the error is

logged into the “ERRORS.txt” file and that

“ERRORS.txt” file is placed into the

“..._Results.zip” file into the “From” dir,

which triggers Phase Three.

G. Clean up any leftover files.

H. Process any remaining zip files in the

TestCal\From dir that may have been

uploaded either before MonitorDir was

loaded or while the current session was

being processed.

17

I. Re-launch the MonitorDir program.

PHASE THREE

1. The monitor triggers the

AutoCal_LocalUpload.bat script when a file

appears in the dir [remember, it may not be

a file that pertains to one of the local queue

items]

2. This script first checks to see if the triggered

item pertains to the local queue items.

3. If it does not pertain to any of the queue

items, then it should go back and relaunch

MonitorDir to wait for more results

4. If it does pertain to at least one of the

queue items, then it should do the following

steps.

4.1. It must download the file

4.2. Remove the file from the server

4.3. Unzip the file to a temp dir

4.4. Move the contents to their appropriate

areas [.\Cal, .\Cal\BinFiles,

.\{capturedfilesdir}]

4.5. Remove the downloaded file and any

temp files used to do the work.

4.6. * Run the script specified in the queue

item to complete the autonomous

processing.

4.7. Loop back to step 2 above to process

any remaining queue items. There can

be a lot of reasons why they didn't get

processed before.

It’s amazing that it all works.

REBOOTING

We have also repeatedly learned, through

troubleshooting, that we needed to reboot the

computers just before archiving and also before

LaunchCapture each day so that (a) post-

capture processing of backlogs will not interfere

with current archiving procedures or capture. I

have only implemented this at a few test sites

so far. Rebooting before archiving solves a few

problems that have been experienced. When

backlog processing is active, it can slow the

archiving procedure to the point where it could

take more time than we’ve given it (usually

about an hour) to complete. (b) Remember, the

computer reboots again each day at 4pm to

clear the system of rogue applications in order

to avoid dropping frames from the video

grabber during capture. Rebooting the system

also clears any issues with computer locking up

due to electrical glitches and such. You can

always remotely regain control after 4pm. Also,

rebooting just before capture is about the only

way to ensure that the fewest number of other

programs are running. Other programs running

is a common cause of dropped frames.

Rebooting is performed by the “Cams2 Reboot

PC” scheduled task, which has two triggers.

STATUS REPORTING

In 2018, I introduced the GetStatus.bat script.

The idea was for each station to report and

upload its status to the server. Calling

GetStatus.bat is incorporated within the

Upload_Queue.bat script. Each station runs the

status report several times per day. It also runs

after each reboot. After it is run, its report is

uploaded to the NASA server to a shared

location where all status reports are kept

worldwide. Each status report has a unique

name according to the station name, not

according to the session name. Therefore,

status reports on the server will overwrite the

previous status report.

A status report contains a lot of information. It

will contain information about your system,

such as windows version number, disk space,

when the report was created, how much

network data you have used in this billing cycle,

and when it was most recently rebooted. An

issue detected here will be cause to take action,

for example, to free up some disk space.

18

It also contains a list of the 10 most recent

Transmission files and their MD5 files. This gives

you an opportunity to determine if your upload

procedures have been successful. If they are

not, then you’ll need to take action to

determine why and resolve it.

It reports on how many unprocessed Capture

sessions there still are in the CapturedFiles

directory. If there are any that appear, then you

will be approaching a disk space issue. This is

an indication that some action needs to be

taken to correct the problem.

A big part of the report is the SubmissionFiles

section. In this section, each of the most recent

10 capture sessions are listed for each CAMS

instance. For each capture session, you will see

the entire size of the capture session in MB,

how many files there are (you can compare

these numbers with other sessions), the session

name, the total number of detections, and

whether the Validation, AutoCal, Detection, and

Transmitted phases of post-capture processing

have completed or failed.

In addition to that information, each camera’s

information is listed to help you identify trouble

spots. For each camera, we show the capture

session, the camera number, the number of

detections for that camera, the FOV and image

scale, the CAL file, and dropped frames

information. Too many detections points you to

a noisy camera. Too many dropped frames

points you to a CPU contention problem in the

computer. If the image scale is different than

previous capture sessions, then you might have

a scale flip/flop problem.

A list of the 20 most recent CAL files is then

shown in the CAL files section. A camera that

consistently fails to calibrate indicates that

some manual calibration intervention is

needed.

The archive settings are then shown, indicating

how long you intend on keeping session data

around outside the archive. If you are running

out of disk space, you can examine these figures

and look at whether to modify the

MaxDaysToKeep setting. MaxDaysToKeep

applies to the number of days to keep

CapturedFiles FF_*.bin files before culling them.

There is also a list of the 10 most recent archive

zip files, along with their sizes. Excessive sizes

will inform you of issues related to archiving

sessions with noisy cameras and it is possible

that it takes so long to process, that you never

get a chance to complete the ever-important

disk management part of daily processing. Also,

a list of each of the Cams_Archive

subdirectories and their sizes is next, in case the

information is helpful.

There is a list at the bottom that indicates which

processes were still running at the time the

report was generated.

The final step is it uploads the report to the

status folder in the server. This provides a

central place to access station status without

having to connect to each station. It is helpful to

network coordinators so they don’t have to

remotely connect to numerous stations to

determine if they are OK. Also, you should be

able to configure your phone or tablet to access

this information via FTP when you are away

from your computer. Lastly, they are used by

the Status_Check.bat scripts.

STATUS_CHECK REPORT

Sometimes, the GetStatus reports contain too

much information for you to quickly identify

issues that you might be having that require you

to take action. So, some Status_Check reporting

scripts were created to only report on the alerts

that you need to consider taking action on. The

Status_Check.bat scripts download and read the

GetStatus report(s) from the collection of status

reports on the server. If nothing is wrong, they

19

will simply list that the status report was found,

its date/time, and that it was OK.

However, the Status_Check scripts were

created to “read” the GetStatus reports of the

stations in your network and to alert you of

issues, such as disk space getting too low, noisy

cameras, and cameras with excessive dropped

frames. Excessive dropped frames and

excessive detections per camera have three

alert levels: WARNING, WATCH, and CRITICAL.

In addition, it will report if the station has not

uploaded a status report after 2 or more days,

indicating that someone needs to attend to the

station to make sure that it is up and running.

There are a few other things that are reported

in the status_check reports, but I don’t

remember right now. One of them is whether

the power is off to individual cameras. This is a

common condition when a cable is cut or

tarnished or people are trying to use Christmas

tree timers in timer mode instead of day/nite

mode to power the cameras and the timer is

not set to the correct time.

The status report is generated as a text file,

then it is converted to an HTML file with

hyperlinks to the full GetStatus report that was

downloaded from the server. This is a very

useful tool.

The Status_Check reports are not uploaded to

the server. They are kept locally. They can be

run from any Windows computer that has the

AutoCAMS scripts configured. They are also

only run when you tell them to.

The Status_Check reports are designed to also

be able to work with a

Status_Check_<network>.txt file. When the

status_check script is told to use the file, it

produces its report for all stations in the local

CAMS network. For example,

status_report_AR.txt to produce a status report

for all stations in the Arkansas network.

You can create a shortcut on your desktop to

launch the script with your network file.

CAMS POINTING TOOL

While it’s not specifically part of AutoCAMS,

around September, 2014, I developed the CAMS

Pointing Tool (available here:

http://davesamuels.com/cams/camspointing/sc

ripts/latlong.html). It can be used to create a

Laydown before setting up your AutoCAMS.

The tool takes time to get used to, but it is a

useful tool for site operators to help in

determining where to point their cameras to

attain the best overlap with other cameras. It

can be used to create, what we call a “laydown”

for one or many cameras from one or more

sites.

http://davesamuels.com/cams/camspointing/scripts/latlong.html
http://davesamuels.com/cams/camspointing/scripts/latlong.html

20

Thanks to Chris Veness for providing the

haversine functions and the basic layout for the

page. The input fields are arranged in the order

that they appear in a CAL files.

While not part of AutoCAMS, it has proven to

be a useful tool by many CAMS users.

An alternative Laydown can be more flexible

This image shows a Laydown of one 16

camera all-sky station.

CAMS Pointing Tool web page. Used for

creating “laydowns” and figuring overlap with

other cameras.

Laydown of the overlap between Sunnyvale and Jim Wray’s

station in Forest Hill after Jim tilted his box toward

Sunnyvale. Gray is Sunnyvale.

21

This image shows a Laydown of two 16 camera all-sky

stations optimized for each other. When designed for

each other, full-sky coverage can be achieved.

22

UPDATE SCRIPT

Somewhere along the line, an

UpdateScripts.bat script was invented

and developed. It was developed in

order to keep all the stations updated as

much as possible to the same version of

the software. It is launched daily by a

scheduled task, “Update Scripts”. The

script’s job is to check if there are

pending updates that you don’t have.

While it was a lofty goal, in some

specific cases, it wasn’t practical due to

network problems and such. We

currently distribute and install the

scheduled task, but we disable it. Also, it

is not compatible with Cams 2, so we

must keep it disabled until

UpdateScripts.bat is migrated to Cams2.

UpdateScript is more of a system than

just a script. It has its own directory

structure under

“?.\cams2_queue\Updates”. Under the

“Updates” dir, there are other subdirs for

Pending, Temp, Updated, and Zips.

These are places where different kinds

of files in different stages of updating

are stored.

The Pending dir is where new updates,

which are downloaded from the server,

that have not yet been processed are

temporarily saved. Only zip files are

used for this protocol. Mostly because

they preserve the file modified dates. It’s

important that these zip files are placed

in this directory in the version order. The

version is determined by the CAMS

timestamp on the zip file. If there is only

one update in a single day, you can use

“00_00_00” as the time segment of the

zip file name. If there is a second one,

there is no harm in using the time

segment as a sequence counter, such as

“00_00_01”. But it was designed to hold

the time, so you can use that too.

The Temp dir is where we unzip an

update zip, one at a time, and process.

The Updated dir is where we place zips

that have been downloaded and

incorporated after completion.

The Zips dir is where we place zips

that…

A benefit of keeping the zip files around

is so that you can use them to fix

regression bugs and revert back to a

previous version of a file by unzipping it

manually to its target location.

Finally, the UpdateScript.log file is kept

in the “?:\cams2_queue\Updates” dir.

The layout of the UpdateScript.log file

looks like this:

23

Timestamp 8601 UTC indicates a

modified ISO 8601 date/time structure.

It provides the UTC offset.

CAMS TIMESTAMP UTC indicates

the modified date of the file, normalized

to UTC.

Size is the size of the file... in Bytes.

Zip File Name is the name of a zip file.

There will always be an entry for a zip

file with no Entry sequence number.

That represents the actual zip file.

Entry is the file within the specified zip

file.

It checks a folder on the NASA server

each day. It downloads any new zip files

if they either (a) don’t exist locally; or

(b) the “UpdateScript.log” file doesn’t

have a matching zip file name in it. You

see, the local UpdateScript.log file, in

the Updates dir tracks all the changes to

the system.

The workflow of the script works is like

this:

24.1. It is launched without any

command line arguments;

therefore, it is compatible with

being able to execute it by double-

clicking on it. Typically, it is

called daily by a scheduled task,

best run an hour or so before

capture starts each afternoon. Be

careful setting the time of this task.

Capture is not the only thing that

happens during the day. You also

have other scripts that run, such as

archiving, uploading, status, etc.

They all run at different times of

the day. It might be a

recommendation to disable all the

tasks and scripts. It would be a

good practice to launch the

LaunchCapture_KILL task to stop

all the running tasks. After you do

the update script, you can simply

reboot the computer and it should

start using all the new scripts.

The files will be distributed to all

the local directories identified in

the “Cams2Global.ini”

[UPDATESCRIPT]

bat_CAMS2UPDATESCRIPT.run

folder section. It will first check all

the

“!bat_CAMS2DIR.#!\RunFolder”]

directories. It will check each of

those bat_camsdir(s) as well as

any “..\RunFolder” subdirs of

those camsdirs.

NOTE: This is no longer the

structure of AutoCams. So don’t

use this until it is updated.

24.2. It uses the “cams2Global.ini”

[UPDATESCRIPT] section

variables to control the script.

Variables include:

• [CAMS2UPDATESCRIPT]

• server_folder=/incoming/cams2updates/

• local_dir=D:\cams2_queue\Updates

• update_logfile=UpdateScript.log

• bat_CAMS2UPDATESCRIPT.runfolder.1=!bat_C

AMS2QUEUE.queue_dir!\RunFolder

• bat_CAMS2UPDATESCRIPT.runfolder.2=!bat_C

AMS2DIR.0!\RunFolder

• bat_CAMS2UPDATESCRIPT.runfolder.3=!bat_C

AMS2DIR.1!\RunFolder

• //bat_CAMS2UPDATESCRIPT.runfolder.4=!bat

_CAMS2DIR.2!\RunFolder

• And these files will be copied to the

CAMS dirs.

• [CAMS2UPDATECAMS]

• bat_CAMS2UPDATECAMS.camsfile.1=LaunchCap

ture.exe

• bat_CAMS2UPDATECAMS.camsfile.2=CamsGUI.e

xe

• bat_CAMS2UPDATECAMS.camsfile.3=junk4.bat

24.3. IMPORTANT: These downloads

must be accounted for in the

“?:\cams2_queue\BytesThisBillingc

ycle.txt” in case your system is on a

metered internet connection.

24

24.4. Before downloading a zip file to the

Pending dir from the

“cams2updates/” folder on the

server, it will clear out the

“?:\cams2_queue\Updates\Temp”

dir. Then it will download the zip

file, if the file doesn’t exist in the

“UpdateScript.log”. If it already

exists there, it will not download

any update zip files.

24.5. The naming convention for the

update zip file will be as shown

below:

 2018_01_24_03_04_06.zip

The time section isn’t important

(unless there are more zips for that

day), so you could use it as a

sequence number. For example:

“2018_01_24_00_00_01.zip”

24.6. After downloading the zip file, the

zip file name will be added to the

UpdateScript.log file. Remember,

the zip file could be a split zip.

Then, the zip will be unzipped to

the ..\Temp dir. Then, all the files

in the ..\Temp dir will be added to

the UpdateScript.log file. For each

file in the ..\Temp dir, the log entry

will look somewhat like this:

Note: The reason for using fixed

length fields is to make it easier for

humans to read.

24.7. It accommodates split zip files.

24.8. After updating the log file, it copies

all the files in the Temp dir to all

the appropriate directories.

24.9. Then it cleans out the Temp dir.

24.10. It should run it its own cmd_shell:

cmd_UpdateScripts.bat.exe

OPTIMIZATION: Download a list

of files first to cache locally, like

"ftp.temp3.txt".

Add each of those zip files

that aren't listed in the log file

to the "ftp.temp.txt"

command file with a "get"

command.

NEEDS: Needs to update the

BytesThisBillingCycle.txt file for

the downloads.

About the Author:

Dave Samuels is a computer programmer and

technical curriculum developer for IBM and

corporate trainer. He is an amateur astronomer

and is an experienced astro-imager. He served

on the board of Fremont Peak Observatory

association for 13 years He has been managing

global CAMS operations since 2011.

25

